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Spin-polarized transmission is calculated for electrons that experience interface elastic and spin-orbit impu-
rity scattering. It is shown that the spin-orbit part of impurity scattering enhances the spin polarization of
transmitted electrons and that overbarrier reflection results in resonant spin-polarized transmission. Applied
voltage dependence of spin transmission is calculated. This is the prerequisite for the electrically controlled
in-plane spin current in a semiconductor structure.
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I. INTRODUCTION

Since spintronics has become an important part of solid-
state physics, various aspects of spin injection into nonmag-
netic semiconductors have been discussed. Electrical spin
polarization in semiconductors has been studied mostly in
metal-semiconductor contacts where electron injection from
a ferromagnetic metal takes place.1–3

Spin-orbit interaction in cubic semiconductors with no in-
version symmetry makes spin injection possible without the
use of an applied magnetic field and �or� magnetic
materials.4–6 This approach to spin injection relies on tunnel-
ing through a single nonmagnetic barrier7,8 or resonant trans-
mission through a double-barrier structure.9–11 The spin po-
larization originates from the momentum-dependent energy
splitting of electrons with opposite spins. The sources of spin
splitting are the intrinsic Dresselhaus and the interface-
induced Rashba spin-orbit interaction terms in an electron
energy spectrum.

To date, tunneling through a single III-V semiconductor
barrier has been studied in Refs. 7, 8, and 12. In these refer-
ences, only the Dresselhaus term was taken into account.
This consideration is adequate if the material is of cubic
symmetry, the interface orientation excludes polarization
fields, and no voltage is applied, thus providing a symmetric
barrier for which the Rashba term equals zero. In more com-
plex case of wurtzite AlGaN quantum wells, symmetry al-
lows intrinsic linear k-dependent spin splitting to exist, and
the polarization fields distort the band structure, making the
extrinsic Rashba term nonzero as the structure becomes
asymmetric. One more difference between cubic and wurtz-
ite structures is that the Dresselhaus and Rashba terms in
wurtzite structures have the same momentum-dependent spin
symmetry.13

As for spintronic applications, GaN-based devices may
deliver performance comparable to their GaAs-based coun-
terparts: spin splitting and Rashba coupling in GaN hetero-
structures have been calculated theoretically14,15 and studied
experimentally.16–18 In-plane spin current induced by a ver-
tical tunneling across the wide band-gap double-barrier
structure has been studied in Ref. 19.

It is known that interface elastic impurity scattering plays
an important role in transmission through metal-metal,20

semiconductor-superconductor,21 and metal-semiconductor22

contacts. The elastic scattering affects electron transmission,

current-voltage characteristics, and could even change the
type of conductivity from metallic to a tunnel one. Since we
are discussing spin polarization, it is important to take into
account spin-orbit part of impurity scattering as it might in-
fluence the discrimination between transmission amplitudes
in two spin channels.

In this paper, we calculate spin-polarized tunnel transmis-
sion through a biased GaN/AlGaN/GaN barrier in the pres-
ence of interface elastic scattering. Both mechanisms of
electron-spin splitting, Dresselhaus and Rashba, are taken
into account. The voltage-dependent spin-tunnel transmis-
sion is calculated and it is shown that impurity spin-orbit
scattering increases the spin polarization. Also, it is shown
that due to overbarrier electron reflection, even single barrier
structures may deliver resonances in spin filtering. This
makes single barrier ballistic contacts competitive with
double-barrier structures where resonances stem from reso-
nance tunneling.

II. HAMILTONIAN

We start with an effective Hamiltonian for a conduction
electron at the z=0 interface between a thick GaN layer and
an AlGaN barrier assuming the spin axis is along the growth
direction �0Z�,13

H =
�2k�

2

2m�

+ kz� �2

2mz
+ �D��xky − �ykx��kz + W0������z� + V�z�

+ �W1������z� + �� +
1

2

��

�z
+
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�

�z
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2 ,

kz = − i
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�z
; �� = �x,y� , �1�

where we use the notation of Ref. 14, �D is the Dresselhaus
spin-orbit coupling constant, � is the linear spin-orbit
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coupling parameter in a bulk wurtzite material, V�z� is the
heterostructure potential-energy profile that may include an
external bias Vext as shown in Fig. 1,

V�z� = 
 0 left GaN �l�
�Ec − eFz AlGaN barrier �b�

− eVext right GaN �r� ,
�

F = Vext/l , �2�

�Ec is the conduction-band offset and l is the barrier width.
In contrast to cubic GaAs-based structures, the

momentum-dependent spin invariant of the Dresselhaus term
is similar to that of the Rashba term �term proportional to
�� /�z in Eq. �1�	. Matrix elements W0 and W1 describe spin-
independent and spin-orbit parts of impurity-scattering am-
plitude. The impurity potential Wimp�r�� is an addition to the
lattice periodic potential, thus generating matrix elements
similar to those generated by the periodic potential resulting
in the effective Hamiltonian �1�. The Hamiltonian contains
the matrix elements written below,

W1���� = P1P2
�

�z

	
�iY
Wimp

s.o.�r��
Z�
�Eg + 2�2 − V�z�	�Eg + �1 + �2 − V�z�	 − 2�3

2 ,

W0���� = �S
Wimp�r��
S�, Wimp�r�� = 
iw�r� − R�
� � , �3�

where 
Z�, 
iY�, and 
S� are atomic basis wave functions.
Integration in matrix elements is over the unit cell defined by
an in-plane vector �� , and w�r�� is the potential of a single
impurity located at point R�

� , and �1,2,3 are the crystal-field
and spin-orbit parameters in the bulk material, respectively.
Amplitudes W0 and W1 vary slowly with �� on the scale of the
average distance between impurities. In addition, the ampli-
tudes can be considered as random variables.

Unitary rotation u to a new spin axis in the x-y plane
transforms eigenspinors and diagonalizes the Hamiltonian,

u =
1
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� 1 i

i ei� ei� �, tan��� =
ky
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mz

 = mz�1 � 2�Dmzk�/�2�−1. �4�

Since we are considering scattering on nonmagnetic im-
purities, in a new basis there are no spin-flip processes, i.e.,
the spin-orbit scattering amplitude W1 does not mix up the
spin states �
.

Electron wave functions in layers, numbered in Eq. �2�,
can be represented as follows:

�l
 = eiklz + r
e−iklz, �b
 = A2Ai�s
� + B2Bi�s
� ,

�r
 = t
eikr�z−a�, �5�

where Ai�s�, Bi�s� are the Airy functions, r
 , t
 are the re-
flection and transmission amplitudes, respectively,

�kl =�2mz�E −
�2k�

2

2m�

� ; �kr =�2mz�E −
�2k�

2

2m�

+ eVext� ,

s
 = � 2mz



�2e2F2�1/3

��Ec − eFz − E� . �6�

III. BOUNDARY CONDITIONS AND SPIN-SELECTIVE
TUNNEL TRANSMISSION

In order to account for the random field pinned to the
interface, one has to obtain generic boundary conditions for
the electron flux at the interface z=0 from the z integration
of the Hamiltonian �3�: �0−

0+H
�
dz=0. Multiplying this
equation by a conjugate �


� and averaging over the interface

area A, �1 /A��. . .e−�ik��+k��� ���/2d�� , one comes to the full set of
matching conditions for wave functions and fluxes. Averag-
ing the matching wave functions over the interface results in
equal transverse momenta on both sides of the interface
k�� =k���, and the boundary conditions follow:

1

kFl
� ��l

�z
�

z=0
−

ml

2mr

kFl
� ��b

�z
�

z=0
+ �l�0��Z0 � q�R + Z1�	 = 0,

�l�0� = �b�0� , �7�

where q=k�⁄kFl, Z0=
2mlV0

�2kFl
, Z1=2m1V1 /�2, and R=m1� /�2.

Here the potential and spin-orbit scattering parameters
V0,1 are zero Fourier components of random scattering fields
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FIG. 1. Conduction-band profile in Al0.2Ga0.2N.
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W0,1 :V1,0= �1 /A��W1,0����d�� . Z0 was introduced as a phe-
nomelogical parameter in Ref. 20. It is assumed that the ran-
dom variables Z0,1 have Gaussian distribution with the root
mean square of �0,1=0.1�Z0,1�, where �¯ � is the average
over the random field distribution.

The tunnel transparency of the structure is found using the
transfer matrix method. The transfer matrix is composed of a
set of four boundary conditions, Eq. �7�, for interfaces at
z=0 and z=a �see Fig. 1�.

Numerical calculations have been performed for a
60-Å-wide barrier with 20% Al content assuming the
Dresselhaus coupling constant �D�2	10−31 eV m3 �Ref.
23� and the Fermi energy EF=85 meV. Bulk k-linear spin-
orbit � has been neglected as its role in tunneling is much
less important than that of the Dresselhaus term that renor-
malizes the masses of tunneling electrons. Interband matrix

elements are taken from Ref. 14:
P1,2

2

2m0
=20 eV. The parameter

R�10−3 has been estimated from � Eq. �1�. One can obtain
an order of magnitude estimation of parameters Z0,1 assum-
ing Coulomb impurity potential-energy scale of C0�1 eV
and spin-orbit characteristic energy of C1�1 meV. Based
on Eq. �4�, we have V0 /a�C0 and V1kF1 /a�C1, where a is
the lattice constant. Estimated parameters follow from Eq.
�7�: Z0�3, Z1�3	10−3.

Figure 2 illustrates the averaged transmission �t+� calcu-

lated for the structure shown in Fig. 1. Overbarrier electron
reflection is at the origin of resonances in the transmission
coefficient, making two barrier boundaries act as a semi-
transparent Fabri-Perot resonator with a quality factor that
depends on reflection coefficients. Transmission resonances
are illustrated in Fig. 2. The first resonance in an unbiased
structure occurs at E=0.16 eV, just above the top of the
barrier. Finite bias makes the shape of the barrier triangular
and then shifts resonance to lower energies.

Single-mode tunnel spin polarization is defined as
P=

�t+�−�t−�
�t+�+�t−� . Single-mode spin polarization is shown in Fig. 3

as a function of the applied voltage. Resonances in transmis-
sion �Fig. 2� and spin polarization �Fig. 3� originate from
overbarrier electron reflection and look similar to those that
occur in double-barrier structures, where they stem from
resonance tunneling. The examples of spin polarization de-
pendent on scattering parameters �Z0� and �Z1� are illustrated
in Figs. 4 and 5, respectively. The spin-orbit scattering pa-
rameter represents an addition to the Rashba spin-splitting
term in Eq. �7�, i.e., it affects the spin polarization through
boundary conditions.

The spin polarization by itself does not mean that spin
injection occurs when the tunnel current flows across the
barrier: in equilibrium the summation over all in-plane wave
vectors makes the total spin polarization zero. Spin injection
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FIG. 2. Tunnel transmission as a function of an energy,
k� =0.3kF, �Z0�=3; �Z1�=0.003.
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FIG. 3. Spin polarization vs applied voltage, E=1.5EF,
k� =1.1kF, �Z0�=3; �Z1�=0.003.
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occurs if some nonequilibrium process violates in-plane
symmetry �for instance, in-plane electric current in the re-
gion �r� or �l� �Refs. 10, 11, and 19�	. Resulting in-plane spin
current is perpendicular to a lateral electric field FL.

The magnitude of spin current, produced by tunneling
electrons of energy E, can be written as

JS�x� =
q�FLkFl

3

32�2m1
�

0

Qmax�x�

q2dq
� f1

�x
��t+� − �t−�� , �8�

where x=E /EF, f l is the equilibrium electron distribution
function in the region �l�. The upper limit Qmax�x� is deter-
mined by the region where both incident and outgoing elec-
tron wave vectors are real. Assuming a momentum relaxation
time of �=10−13 s and a lateral field of FL=104 V /cm, the
spin current calculated with Eq. �8� is shown in Fig. 6.

In conclusion, the spin-orbit part of interface impurity
scattering plays an important role in spin-selective electron
transmission and may enhance spin-polarization efficiency.
The resonance spin transmission, controlled by an applied
voltage, which usually occurs in double-barrier structures,
can be observed even in a single barrier contact. This is
especially important in spintronic applications of wide band-
gap semiconductors, where high-quality double-barrier reso-
nant tunneling diodes have not yet been reported �see review
Ref. 24�.
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